Product datasheet

Note: This protocol was modified as of November 2016. All previous protocols are obsolete.

Human IL-10 ELISA Kit

Product \#: 0031

Storage recommendations

Store the kit at $2-8^{\circ} \mathrm{C}$. The kit is stable for a period of up to 3 months from the date of receipt.

Description

This human IL-10 ELISA kit is designed to enable the quantitative measurement of natural and/or recombinant IL-10 in serum and cell culture media. The kit contains one strip-well plate pre-coated with human IL-10 capture antibody along with sufficient key reagents for plate development.

Reagent preparation

Wash buffer (20x)

If crystals have formed in the concentrate, warm to room temperature and mix well. Once all the visible crystals have dissolved, dilute 25 mL of wash buffer concentrate in 475 mL of distilled water to make 500 mL of wash buffer.

Standard

The standard is present in lyophilised form with the amount of standard present in the tube clearly stated on the label. Prior to reconstitution, briefly centrifuge the vial to ensure that any loose lyophilised material has collected at the bottom of the tube.

For cell culture samples:

Reconstitute the standard in 1 mL of assay diluent 1B and mix well by inversion. Allow the standard to dissolve for at least 15 minutes with regular inversion prior to use. Dividing the amount of lyophilised standard (as per the label) by 1 mL will give the standard concentration. Use sample culture medium to perform the serial dilutions.

For serum samples:

Reconstitute the standard in 1 ml of assay diluent 1B and mix well by inversion. Allow the standard to dissolve for at least 15 minutes with regular inversion prior to use. Dividing the amount of lyophilised standard (as per the label) by 1 mL will give the standard concentration. Use assay diluent 1 B to perform the serial dilutions.
-COm

The standard curve should be performed in duplicate starting at $1000 \mathrm{pg} / \mathrm{mL}$ and diluted 1 in 2 down to at least $15.6 \mathrm{pg} / \mathrm{mL}$. Use the formula $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$ to calculate the amount of stock required to make 1 mL of the $1000 \mathrm{pg} / \mathrm{mL}$ standard. Perform this initial dilution in a micro tube ensuring that the appropriate diluent is used. Serial dilutions are then easily achieved by using a micro-titre plate (or similar). Load $300 \mu \mathrm{~L}$ of the $1000 \mathrm{pg} / \mathrm{mL}$ standard into the first 2 wells of the dilution plate and load $125 \mu \mathrm{~L}$ of the appropriate diluent into the remaining wells. Using a multichannel pipette, transfer $125 \mu \mathrm{~L}$ from the first wells (i.e. $1000 \mathrm{pg} / \mathrm{mL}$) into the second wells (now $500 \mathrm{pg} / \mathrm{mL}$), mix well by pipetting up and down before transferring $125 \mu \mathrm{~L}$ to the next wells (now $250 \mathrm{pg} / \mathrm{mL}$). Repeat until the serial dilution is complete.

Detection antibody

Briefly centrifuge prior to use. The anti-human IL-10 biotin labelled detection antibody is provided in a liquid form at the concentration specified on the tube. The anti-human IL-10 biotin labelled detection antibody should be diluted to $125 \mathrm{ng} / \mathrm{mL}$ in assay diluent 1B immediately prior to use.

Streptavidin-HRP conjugate

Briefly centrifuge prior to use. The streptavidin-HRP conjugate should be diluted 500 fold in assay diluent 1B immediately prior to use. For example, if developing the entire plate aliquot $22 \mu \mathrm{~L}$ of streptavidin-HRP conjugate into 11 mL of assay diluent 1B.

Protocol

It is highly recommended that all standards, samples and zero standard controls be performed in duplicate. Ensure that all reagents are at room temp prior to use.

1. Prepare solutions as required by following the instructions outlined in the reagent preparation section
2. Remove any 8 well strips that are not required for the assay and place back in the foil pouch ensuring that it is closed tightly.
3. Add $100 \mu \mathrm{~L}$ of standards, samples and zero standard controls to the plate and seal the plate with the adhesive cover provided. Incubate for 2 hour at room temperature.
4. Aspirate each well and wash the plate $4 x$ with wash buffer $(250 \mu \mathrm{~L})$. Washing can be achieved with a multichannel pipette, plate washer or similar. To remove residual wash buffer invert the plate and tap the plate on paper towels between each wash.
5. Add $100 \mu \mathrm{~L}$ of biotin labelled detection antibody to each well and seal the plate with the adhesive cover provided. Incubate for 1 hour at room temperature.
6. Repeat the aspiration/wash steps in step 4.
7. Add $100 \mu \mathrm{~L}$ of freshly diluted streptavidin-HRP conjugate to each well and seal the plate with the adhesive cover provided. Incubate for 45 minutes at room temperature.
8. Aspirate each well and wash the plate $\mathbf{5 x}$ with wash buffer $(250 \mu \mathrm{~L})$ as per step 4 . It is important to wash thoroughly here to reduce unwanted background.
9. Add $100 \mu \mathrm{~L}$ of TMB substrate to each well and incubate for approximately 15 minutes at room temperature. Ensure the plate is protected from light. Check the development process (blue colour) every 5 minutes or so to prevent over development of the plate.
10. Stop the reaction with $50 \mu \mathrm{~L}$ of stop solution. The wells will turn from blue to yellow in colour.
11. Determine the optical density (OD) of the plate using a micro-plate reader set at 450 nm . If the micro-plate reader allows wavelength correction, set at 570nm.

Calculation of results

Calculate the mean absorbance for each standard, sample and control and subtract the mean of the zero standard controls.

Create a standard curve by plotting the mean OD of each standard on the y-axis versus the standard concentration on the x-axis. If available, use a program capable of generating a four parameter logistic (4-PL) curve fit. A free user friendly 4-PL program is available online at http://elisaanalysis.com. Alternatively, plot a best fit curve through the standard points and overlay a linear or polynomial trend-line. The resultant equation displayed on the graph can then be used to calculate the unknown concentrations by solving for x. When fitting a trend-line it is essential that the r^{2} value is 0.99 or higher. If not, then simply find the linear portion of the graph by removing the higher standard points from the analysis.

If the samples were diluted then multiply the concentration read from the standard curve by the dilution factor.

elisakit

Standard curve

This is a representative example of a typical standard curve. A separate standard curve must be generated for each experiment.

Sensitivity

The lower limit of quantitation (LLQ) of the assay is typically $<5 \mathrm{pg} / \mathrm{mL}$.
The LLQ was determined by adding 3 standard deviations to the mean optical density of 5 zero antigen replicates and calculating the corresponding concentration.

Precision.

Intra-assay CV: <10\%
Inter-assay CV: <10\%

Recovery.

Pooled human sera was spiked with recombinant human IL-10 and compared to a spiked assay diluent control. Typical values are as follows.

Control values (ng/ml)	Serum value (ng/ml)	Recovery (\%)
310	255	82
143	116	81
62.5	64	102

Linearity. Linearity of dilution was determined by serially diluting spiked samples and analysing them in the ELISA.

Sample	Dilution factor	Expected (ng/ml)	Observed (ng/ml)	Recovery (\%)
Culture	neat	310	-	-
supernatant	$1: 2$	155	143	92
	$1: 4$	77	65	87
Serum	neat	255	-	-
	$1: 2$	126	116	92
	$1: 4$	64	64	100

Cross reactivity

This ELISA kit recognises natural and recombinant human IL-10. No significant cross-reaction with human IL-1 α, IL-2, IL-3, IL-4, IL-6, IL-7, IL-8, TNF α, TNF β, or IFN γ. Approximately 2% cross-reactivity with recombinant mouse IL-10.

Technical hints

Always ensure complete reconstitution and/or dilution of reagents prior to use.

To ensure uniform temperature/humidity levels for all steps of the ELISA across the entire plate it is often beneficial to perform the incubations in a humidity chamber. This can simply be a Styrofoam box containing moistened paper hand towels.

Plates should always be incubated with the adhesive plate sealer in place.

Always ensure accurate pipetting of reagents at all times, especially the standards.

